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ABSTRACT
SARS-CoV-2 has been emerged in December 2019 in China, causing deadly (5% mortality) pandemic
pneumonia, termed COVID-19. More than one host-cell receptor is reported to be recognized by the
viral spike protein, among them is the cell-surface Heat Shock Protein A5 (HSPA5), also termed GRP78
or BiP. Upon viral infection, HSPA5 is upregulated, then translocating to the cell membrane where it is
subjected to be recognized by the SARS-CoV-2 spike. In this study, some natural product compounds
are tested against the HSPA5 substrate-binding domain b (SBDb), which reported to be the recogni-
tion site for the SARS-CoV-2 spike. Molecular docking and molecular dynamics simulations are used to
test some natural compounds binding to HSPA5 SBDb. The results show high to a moderate binding
affinity for the phytoestrogens (Diadiazin, Genistein, Formontein, and Biochanin A), chlorogenic acid,
linolenic acid, palmitic acid, caffeic acid, caffeic acid phenethyl ester, hydroxytyrosol, cis-p-Coumaric
acid, cinnamaldehyde, thymoquinone, and some physiological hormones such as estrogens, progester-
one, testosterone, and cholesterol to the HSPA5 SBDb. Based on its binding affinities, the phytoestro-
gens and estrogens are the best in binding HSPA5, hence may interfere with SARS-CoV-2 attachment
to the stressed cells. These compounds can be successful as anti-COVID-19 agents for people with a
high risk of cell stress like elders, cancer patients, and front-line medical staff.
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Introduction

The Chinese National Health Commission reports a novel
human coronavirus (SARS-CoV-2) in December 2019 (Bogoch
et al., 2020; Hui et al., 2020). It was after that declared as a
pandemic two months later by the World Health
Organization (WHO) (Bogoch et al., 2020; World Health
Organization, 2020a, 2020b, 2020c). Pneumonia associated
with SARS-CoV-2, termed COVID-19, is suspected to be due
to the first animal to human transmission in a seafood mar-
ket in Wuhan city in November 2019 (Hui et al., 2020; Parr,
2020 ). On 20 January 2020, Chinese authorities confirmed
the human-to-human route for virus transmission (Hui et al.,

2020). Today, more than 154,000 reported deaths, from the
2.3 million confirmed infections worldwide, are mainly due
to lung failure as a result of SARS-CoV-2 disease. The viral
protein responsible for host-cell recognition is the spike pro-
tein ( ̴ 1300 amino acids), found in homotrimeric state over
the virion particle and characterize coronaviruses (Khan et al.,
2020). Different host cell receptors are recognized by differ-
ent coronaviruses such as Heparan Sulfate Proteoglycans,
Angiotensin-Converting Enzyme 2 (ACE2), Aminopeptidase N,
Heat Shock Protein A5 (HSPA5), furin, and O-Acetylated Sialic
Acid (Belouzard et al., 2012; Hasan et al., 2020; Hofmann
et al., 2005; Huang et al., 2015; Ibrahim et al., 2020; Raj
et al., 2013).
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HSP5A is the master of the unfolded protein response
(UPR) in the lumen of the endoplasmic reticulum (ER)
(Ibrahim et al., 2019).HSPA5 is responsible for protein homeo-
stasis in the lumen of the ER. Upon cell stress, such as under
the condition of viral infection or in the case of cancer cells,
HSPA5 is upregulated and translocated to the cytoplasm and
cell membrane complexing with other proteins (Al-Hashimi
et al., 2018; Chen & Xu, 2017; Misra et al., 2005; Nain et al.,
2017; Pujhari et al., 2017). HSPA5 is reported to be cell-sur-
face exposed and responsible for pathogen entry (such as
the fungus Rhizopus oryzae and many viruses like Human
Papillomavirus, Ebola virus, Zika virus, and human coronavi-
ruses) (Elfiky, 2019; Elfiky, 2020a; Elfiky, 2020b; Ibrahim et al.,
2019; Ibrahim et al., 2020; Pujhari et al., 2017).

Different natural products have plenty of active molecules
that can block the recognition site of the cell-surface HSPA5
and compete for the viral spike recognition.

The four phytoestrogens daidzein, genistein, formonone-
tin and biochanin A are found in Cicer arietinum and proved
its estrogenic activity for binding human and murine estro-
gen receptors alpha and beta in silico and it’s in vivo restor-
ation of the bone thickness for ovariectomized mice in a
previous study (Sayed & Elfiky, 2018).

It was reported that both palmitic and linoleic acids alone
(250lM) induce ER stress in H4IIE liver cells, while the co-
treatment of the hepatic cells with palmitic acid (250lM)
and linoleic acid (125 lM) abolished apoptosis (Zhang et al.,
2012). Linoleic acid (125lM), but not palmitic acid (250 lM),
is responsible for cytochrome C release from the mitochon-
dria to the cytoplasm during apoptosis (Zhang et al., 2012).
Additionally, the lipotoxicity of saturated fatty acids like pal-
mitic acid is reversed by the treatment of unsaturated fatty
acids, such as a-Linolenic acid in the renal proximal tubular
cell line, NRK-52E and chlorogenic acid in rat hepatocytes
(Katsoulieris et al., 2009; Zhang et al., 2018).

The pre-treatment of hydroxytyrosol, the bioactive com-
ponent of olive leaf extract, was successful in ameliorating
myocardial infarction-mediated apoptosis, which was induced
by the administration of isoproterenol to H9c2 cells (Wu
et al., 2018).

Grape skin polyphenols, including caffeic acid and p-
Coumaric acid, protect retinal pigment epithelial cells from
photooxidative damage in a previous study (Zhao et al.,
2014). The administration of grape skin extract before
exposing the ARPE-19 cells to blue light was successful in
reducing apoptosis in a dose-dependent manner. At the
same time, GRP78 knockdown inhibited this protective role
of the extract (Zhao et al., 2014). The honeybee hive prop-
olis bioactive component, caffeic acid phenethyl ester
(CAPE), induce oxidized protein-mediated ER stress in an
autophagy-dependent manner (Tomiyama et al., 2018).
CAPE treated human SH-SY5Y neuroblastoma cells overex-
press ER stress-related genes like HSPA5 and enhance the
expression of the autophagy marker, LC3-II (Microtubule-
associated protein 1 A/1B-light chain 3- phosphatidyletha-
nolamine conjugate) (Tanida et al., 2008; Tomiyama
et al., 2018).

Cinnamaldehyde (found in cinnamon) reported reducing
the ER stress in the rat obesity animal model (Neto et al.,
2020). The anticancer, oxidative and antioxidative properties
of cinnamaldehyde are responsible for its potential to be
used against breast cancer, prostate cancer, colon cancer,
leukemia, HCC and oral cancers (Hong et al., 2016).

Thymoquinone (found in Nigella sativa seeds) was
reported to prevent ER stress and mitochondria-induced
apoptosis in rat animal model for ischemia-reperfusion in
the liver (Bouhlel et al., 2017). It reduced the expression
of the ER stress determinants, including HSPA5 in rats,
while it improved the mitochondrial function leading to
liver cell protection against ischemia-reperfusion associated
apoptosis (Bouhlel et al., 2017). Thymoquinone was used
in free and encapsulated formulations to prevent de-mye-
lination in different brain compartments of Wistar rats
while it acts as an anti-inflammatory and remyelinating
agent (Fahmy et al., 2019; Fahmy et al., 2014; Noor
et al., 2015).

In this study, I tested the active components found in
some natural products, known by its involvement in ER
stress, against the host cell chaperone protein, HSPA5.
Additionally, some physiological hormones and compounds
are also tested against the chaperone protein (estrogens,
hydrocortisone, cholesterol, progesterone, and Testosterone)
aiming to find possible natural sources that can alleviate the
rapid spread of the newly emerged coronavirus (SARS-CoV-2)
and reduce its impact on patients who have a higher affinity
to be infected such as cancer patients.

Materials and methods

Structural retrieval

The structures of the natural compounds are retrieved from
the PubChem database (Kim et al., 2016). The structures of
phytoestrogens (daidzein (5281708), genistein (5280961), for-
mononetin (5280378) and biochanin A (5280373), found in
Cicer arietinum), palmitic acid (985) (palm oil), linolenic acid
(5280934) (an essential omega-3 fatty acid found in vege-
table oils like canola, soybean, flaxseed/linseed, and olive
and some nuts), Chlorogenic acid (1794427) (found in cof-
fee), hydroxytyrosol (82755) (found in extra virgin olive oil),
caffeic acid (689043) (found in many sources including ber-
ries, herbs, mushrooms, and coffee beans), caffeic acid phe-
nethyl ester (5281787) (CAPE, the bioactive component of
honeybee hive propolis), p-Coumaric acid (1549106) (found
in fungi, peanuts, tomatoes, and garlic), cinnamaldehyde
(637511) (found in Cinnamomum verum), and thymoquinone
(10281) (found in the seeds of Nigella sativa), are retrieved,
where the PubChem CID is listed after each compound.
Additionally, the structures of physiological compounds like
estrogens (estriol (5756), and b-estradiol (5757)), hydrocorti-
sone (5754), cholesterol (5997), Progesterone (5994), and
Testosterone (6013) are retrieved from PubChem database to
be tested against HSPA5 SBDb and compared to the nat-
ural compounds.

The only available solved structure in the Protein Data
Bank (PDB) for the wild-type and full-length HSPA5 in the
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open configuration is 5E84 (Yang et al., 2015; Yang et al.,
2017). The coordinates of HSPA5 were downloaded and pre-
pared for the docking study (water molecules and ligands
are removed while missing Hydrogen atoms are added).
National Center for Biotechnology Information (NCBI) nucleo-
tide database was used to retrieve the gene (NC_045512.2)
from which spike protein was translated (Expassy translate
tool). A model was built with the aid of Swiss Model portal,
where SARS HCoV (PDB ID: 6NUR, chain A) was used as a
template in a previous study by the author (Biasini et al.,
2014; Ibrahim et al., 2020; NCBI. , 2020). Structure analysis
and verification server (SAVES) of UCLA was used to validate
the model (SAVES. , 2020). The validated model of the SARS-
CoV-2 spike was energy-optimized using the computational
chemistry workspace SCIGRESS in order for the spike struc-
ture to be ready for the molecular docking experiments. The
minimization of the model was performed using classical
mechanics (MM3 force field) after Hydrogen atoms addition
(Lii & Allinger, 1989).

Molecular docking

Docking experiments (AutoDock Vina software) are per-
formed using the HSPA5 solved structure (PDB ID: 5E84) after
50 ns of classical molecular dynamics simulation (performed
using NAMD software) (Humphrey et al., 1996; Phillips et al.,
2005; Trott & Olson, 2009). Four different conformations of
HSPA5 representing the main four clusters (Chimera soft-
ware) are used to test the ligands binding (Pettersen
et al., 2004).

Thirteen different natural products-derived compounds
are tested against the four different conformations of the
host cell chaperone HSPA5 SBDb, including; daidzein, genis-
tein, formononetin, biochanin A, palmitic acid, linolenic acid,
chlorogenic acid, hydroxytyrosol, caffeic acid, caffeic acid
phenethyl ester, p-Coumaric acid, cinnamaldehyde, and thy-
moquinone. Additionally, six different physiological com-
pounds are also docked to the HSPA5 SBDb for comparison,
including; estriol, estradiol, hydrocortisone, cholesterol, pro-
gesterone, and testosterone. All the dockings are done using
flexible ligand into flexible active site protocol, where both
the ligands and the active site residues (I426, T428, V429,
V432, T434, F451, S452, V457, and I459) are treated as flex-
ible during the search for a possible docking conformation
using the vina scoring function of AutoDock Vina software
(Trott & Olson, 2009; Yang et al., 2015). The grid boxes for
the docking experiments were chosen to be of size
48� 46� 56Å centered at (42.3, 54.9, �29.2) Å (with little
differences between the different conformations of
the HSPA5).

HADDOCK 2.4 web server is utilized to dock the spike
model for SARS-CoV-2 against HSPA5 and the complex of
HSPA5 with its docked ligands (van Dijk & Bonvin, 2006). The
HADDOCK 2.4 easy interface was utilized in the study since
there are no restraints to be defined (de Vries et al., 2010).
Again the HSPA5 active site (I426, T428, V429, V432, T434,
F451, S452, V457, and I459) is treated as flexible. In contrast,
the C480-C488 region of the SARS-CoV-2 spike is treated as

the active residues (binding site) in HADDOCK 2.4, as
reported in a previous study by the author (Ibrahim
et al., 2020).

After docking, the complexes are examined using the
Protein-Ligand Interaction Profiler (PLIP) web server
(Technical University of Dresden) (Salentin et al., 2015).

Results and discussion

Figure 1 shows the 2D structures of the natural product
compounds (A) and physiological compounds (B) tested for
its binding affinity to cell-surface chaperone HSPA5. The
structure of HSPA5 (PDB ID: 5E84) is subjected to 50 ns of
molecular dynamics simulation (MDS) to equilibrize its atoms
in the presence of 0.154M NaCl solution (TIP3P water model)
at 310� K using the CHARMM 36 force field (Ibrahim A.
Noorbatcha et al., 2010; Mark & Nilsson, 2001; Phillips et al.,
2005; Rappe et al., 1992).

Figure 2A shows the Root Mean Square Deviation (RMSD
in Å) (blue line), Radius of Gyration (RoG in Å) (orange line),
and the Surface Accessible Surface Area (SASA in Å2) (gray
line) for HSPA5 during the 50 ns of MDS. The system is equili-
brated starting from about 15 ns, where the RMSD is fluctuat-
ing around 5Å, RoG is fluctuates around 30Å, while SASA
values are increasing slowly until 30 ns where the SASA val-
ues equilibrated at about 32000 Å2. The per residue Root
Mean Square Fluctuations (RMSF) in Å (Figure 2B) show regu-
lar fluctuation pattern except for the region S540-D583
(orange cartoon). The N (blue balls) and C (red balls) termini
of the HSPA5 are highly movable (RMSF up to 7.5 Å) as any
other free terminals during the MDS. At the same time, the
buried region, S540-D583, shows higher fluctuations (RMSF
values up to 8.2 Å) in comparison to the other areas of the
protein (RMSF values less than 4Å). The substrate-binding
domain a has the most movable part of the protein (S540-
D583 region in the orange cartoon), while the target domain,
the substrate-binding domain b (cyan cartoon) and nucleo-
tide-binding domain (green cartoon) show fluctuating RMSF
4Å and down to 1Å.

Docking results

Figure 3A shows the average binding affinities of different
natural compounds to the HSPA5 SBDb four different confor-
mations with the error bars representing the standard devia-
tions (SD). Pep42 (red column) is a cyclic peptide that
recognizes explicitly cell-surface HSPA5 in vivo (Ibrahim et al.,
2019; Kim et al., 2006). The average binding affinity of Pep42
is -6.73 ± 1.13 kcal/mol, which is used here as a reference to
judge other compounds’ binding affinities. Phytoestrogens
(green columns) show excellent average binding energies to
HSPA5 ranging from -6.98 ± 0.19 kcal/mol (biochanin A) up to
-7.80 ± 0.91 kcal/mol (daidzein). Compared to Pep42, the phy-
toestrogens have at least the same binding affinity to HSPA5
SBDb. This means that a dietary supplement of phytoestro-
gens (found in Cicer arietinum) may contradict the binding
of the SARS-CoV-2 spike to the cell-exposed HSPA5 prevent-
ing its recognition by the virus.
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For the saturated (palmitic) and unsaturated fatty acids
(linoleic and chlorogenic acids) (yellow columns) the same
conclusion can be drawn, with a better average binding
affinity to HSPA5 for chlorogenic (�7.10 ± 0.96 kcal/mol) acid
compared to other fatty acids (�6.05 ± 0.51 and
�5.50 ± 0.46 kcal/mol for linoleic and chlorogenic acid,
respectively). This pattern of HSPA5 binding affinities is in
good agreement with the previous reports of the antagonis-
tic effect of unsaturated fatty acids, chlorogenic and linoleic
acids, against the saturated, palmitic, fatty acid which

induces ER stress (Katsoulieris et al., 2009; Zhang et al., 2018;
Zhang et al., 2012). Palmitic, linoleic, and chlorogenic acids
may be used to counteract the SARS-CoV-2 recognition of
the host cell-surface HSPA5 and hence may reduce the viral
attachment. Additionally, the saturated fatty acid, palmitic
acid, may be used to target stressed HSPA5-exposed cells
(viral infected or cancer cell) and induce ER stress leading to
cell apoptosis.

The bioactive component of olive leaf extract, hydroxytyr-
osol, (bink column) shows moderate average binding affinity

Figure 1. 2 D structures of the natural product derived compounds (A) and physiological compounds (B).
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(�5.20 ± 0.35 kcal/mol) to HSPA5 SBDb. Hydroxytyrosol suc-
ceeded in a previous study as a prophylactic agent against
myocardial infarction-mediated apoptosis (Wu et al., 2018).
For the caffeic and p-Coumaric acids (light blue columns),
that are found in grape skin, the average binding affinities to
HSPA5 SBDb are �6.3 ± 0.60 and �5.63 ± 0.57 kcal/mol,
respectively. These values are slightly less than Pep42

(�6.73 ± 1.13 kcal/mol), but the differences are not significant.
Caffeic and p-Coumaric acids may bind to cell-surface HSPA5
competing for its recognition by viral spike protein and
contradict the attachment. The same effect can be concluded
from the caffeic acid phenethyl ester (CAPE) (dark blue col-
umn) that can be found in honeybee hive propolis (average
binding affinity to HSPA5 SBDb is -7.13 ± 0.95 kcal/mol). This

Figure 2. (A) Root Mean Square Deviation (RMSD) in Å (blue line), Radius of Gyration (RoG) in Å (orange line), and Surface Accessible Surface Area (SASA) in Å2
(gray line) versus time in ns for HSPA5. MDS is performed using CHARMM 36 force field by NAMD. (B) per residue, Root Mean Square Fluctuations (RMSF) in Å
(blue line). The structure of HSPA5 is shown in the colored carton with its domain labeled NBD (nucleotide-binding domain) SBD (substrate-binding domains). Blue
and red balls, respectively represent N and C terminals of the protein. SBDb is depicted in cyan cartoon and indicated in the RMSF histogram, while the most mov-
able internal region of HSPA5 (S540-D583) is represented in the orange cartoon.
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Figure 3. The average binding affinity (in kcal/mol) calculated using AutoDock Vina software for the docking of the natural products bioactive compounds (A) and
physiological compounds (B) into the four different conformations of the HSPA5 SBDb. The cyclic peptide Pep42 (red column) is used as a reference due to its spe-
cificity in binding HSPA5 in vivo. Estrogens and phytoestrogen are among the best binders to HSPA5 SBDb.

Table 1. The interactions formed between some natural product bioactive compounds and HSPA5 SBDb upon docking.

Compound
AutoDock score

(kcal/mol)

H-bonding Hydrophobic interaction

number Amino acids involved number Amino acids involved

Daidzein �8.6 0 N/A 8 Q449, F451, F451, I459(3), K460, V495
Genistein �7.5 1 T458 10 I426(2), T428, T434, Q449, F451, F451,

V453, V457, I459
Formononetin �7.5 2 T458(2) 11 I426(2), T428, T434, F451(2), F451,

V453(2), V457, I459
Biochanin A �6.9 5 E427(2), K460(3) 8 E427, V429, F451, V453(3), I459, K460
Chlorogenic acid �6.8 7 E427, V429,

S452(3), T458(2)
5 T428, V429, F451(2), V453

Linolenic acid �6.5 3 T458, K460, K460 16 I426, T428(3), V429(2), Q449(2), F451(4),
I459(2), V495, F497

Palmitic acid �5.5 2 Q449, I450 13 E427, V429, Q449, F451(4), V453, T458,
I459(3), F497

Caffeic acid �6.2 4 F451, V453, I483(2) 4 L480, I483(2), I493
Caffeic acid phenethyl

ester (CAPE)
�6.5 2 S452, T458 7 T428, V429(2), F451, F451(2), V453

Hydroxytyrosol �5.2 2 E427, K460 5 I426, F451(2), I459(2)
cis-p-Coumaric acid �5.6 3 E427, T458, K460 5 E427, V429, F451, V453, I459

One docking trial is selected here to represent one conformation of the HSPA5 during 50 ns MDS. Bold residues are interacting through p-Stacking, while under-
lined residues are forming salt bridges.
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Table 2. The interactions formed between six physiological compounds and HSPA5 SBDb upon docking.

H-bonding Hydrophobic interaction

Compound
AutoDock score
(kcal/mol) number Amino acids involved number Amino acids involved

Estriol �9.1 2 E427, Q449 11 E427, Q449, F451(3), F451, V457, I459(3), K460
Estradiol �8.3 1 T458 6 T428, V429(2), F451, F451, V453
Hydrocortisone (Cortisol) �7.0 5 E427, T456(3), K460 3 E427, F451, I459
Cholesterol �7.3 0 N/A 6 T428, V429, Q449, F451(2), T458
Progesterone �7.6 0 N/A 8 I426, E427, F451(4), I459(2)
Testosterone �8.9 0 N/A 7 I426, E427, F451(4), V457

One docking trial is selected here to represent one conformation of the HSPA5 during 50 ns MDS. Bold residues are interacting through p-Stacking.

Figure 4. The structure of the docked complexes of HSPA5 and the small molecules (A) estradiol, (B) daidzein, and (C) biochanin A. HSPA5 is represented in the
colored surface while the docked small molecules are in orange sticks. The NBD, SBDa, and SBDb domains of the HSPA5 are labeled, while the enlarged panels
show the interactions that established upon docking. The active site residues in the expanded panels are marked with its one-letter code and represented in blue
sticks. H-bonds, hydrophobic contacts, and p-stacking interactions are shown by blue lines, dashed-gray lines, and dashed-green lines, respectively. The docking
score (in kcal/mol) is shown for each complex.
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average binding energy value is better than the highly
selective cyclic peptide, Pep42, which indicates the potential
of CAPE as an HSPA5 SBDb binder. Additionally, CAPE was
reported to induce ER stress in an autophagy-dependent
manner in human SH-SY5Y neuroblastoma (Tanida et al.,
2008; Tomiyama et al., 2018). Cinnamaldehyde (cyan column)
and thymoquinone (violet column) show �6.25 ± 1.10 and
�5.520 ± 0.12 kcal/mol average binding energies to HSPA5
SBDb. These binding energies are comparable to the Pep42
cyclic peptide (�6.73 ± 1.13 kcal/mol) and hence the active
components of cinnamon and the seeds of Nigella sativa
may tightly bind to cell-surface HSPA5 and could be success-
ful in contradicting SARS-CoV-2 spike recognition
and attachment.

Not only the natural compounds can bind HSPA5 SBDb
with high affinity, but also other physiological molecules.
Figure 3B shows the average binding affinities for the bind-
ing of estrogens (estriol and estradiol), cholesterol, progester-
one, testosterone, and hydrocortisone (cortisol) to
HSPA5 SBDb. As implicated from the binding energy values,
all the physiological compounds can tightly bond the HSPA5
SBDb with values ranges from -7.20 ± 0.58 kcal/mol
(Hydrocortisone) up to -8.40 ± 0.98 kcal/mol (estradiol). These
values are lower (better) than that of the Pep42 cyclic pep-
tide, which reported to target cell-surface HSPA5 (GRP78)
in vivo selectively. It is important here to point out that
HSPA5 SBDb may act as a receptor for such hormones. The
binding energies indicate that cell-surface HSPA5 may be
critical for these hormones recognition and hence internaliza-
tion which not only may downregulate the concentration of
cell-surface HSPA5, and its associated chemotherapeutic
resistance, but also may play an essential role in hormone
internalization for cell-signaling (Niu et al., 2015; Zhang et al.,
2015). As a consequence, these hormones may also be used
as protective molecules during chemotherapy to revert the
chemoresistance of the HSPA5 presenting cancer cells.

Tables 1 and 2 summarize the interactions established
between the small molecules and the HSPA5. Two types of
interactions are dominant, the H-bonding and the hydropho-
bic interactions. Additionally, p-stacking (residues in bold in
the tables) is reported between the residue F451 and the
estrogens (estriol and estradiol), phytoestrogens (daidzein,
genistein, and formononetin), caffeic acid phenethyl ester
(CAPE), and cis-p-Coumaric acid. Also, salt bridges (under-
lined residues in Table 1) are formed between the residue
K460 and both linolenic acid and cis-p-Coumaric acid.
Hydrophobic interactions are more dominant compared to
the H-bonding, as can be seen from almost all the natural
and physiological compounds. This is in good agreement
with previous reports defining the function of HSPA5 SBDb
in the lumen of ER as to recognize unfolded proteins in the
lumen of the ER mediating its degradation or refolding using
cellular machinery (Ibrahim et al., 2019; Pfaffenbach & Lee,
2011; Roller & Maddalo, 2013). On the other hand, hydrocor-
tisone and chlorogenic acid have more H-bonds than hydro-
phobic interactions (5:3 and 7:5 for hydrocortisone and
chlorogenic acid, respectively). Additionally, caffeic acid

forms four H-bonds and four hydrophobic contacts with the
HSPA5 SDBb.

Figure 4 shows the interaction analysis made by the PLIP
web server for the docked structures of HSPA5 to estrogen
(estradiol) (A), phytoestrogens (daidzein) (B), and biochanin A
(C) as an example. The HSPA5 is shown in colored surface
representations with its domains labeled. The ligands are
represented in yellow sticks, where it appears how it fit in
the binding site groove of the SBDb. Enlarged views of the
binding sites show how the interactions established upon
docking. Residues in the binding site of HSPA5 SBDb are rep-
resented in blue sticks and labeled with its one-letter code.
In Figure 4, the hydrophobic interactions are described in
dashed-gray lines, while H-bonds and p-stacking are depicted
in solid blue lines and dashed-green lines, respectively.
Docking scores are listed to reflect a binding affinity for each
complex. Noticeably, the interacting residues are mainly
hydrophobic, while hydrophobic interactions are dominant
all the docking complexes. For estradiol, only one H-bond is
formed through T458, while none is reported in daidzein. On
the other hand, the biochanin A-HSPA5 complex show 5H-
bonds. Estradiol and daidzein but not biochanin A form
p-stacking with residue F451 of HSPA5.

I performed molecular docking experiments using the
four different conformations of HSPA5 after the 50 ns MDS
using HADDOCK 2.4. The average docking score is
�66.3 ± 5.7 indicating high binding affinity between the
interacting proteins. Additionally, I tried to dock the small
molecules-HSPA5 complexes to the SARS-CoV-2 spike protein
model, but the spike doesn’t fit the HSPA5 binding site; this
may be due to the presence of the small molecules in the
SBDb of HSPA5. The small molecules prevent the spike from
binding to HSPA5 SBDb in silico. The results support the
effectiveness of natural products and physiological hormones
to block HSPA5 SDBb, preventing SARS-CoV-2 spike recogni-
tion (see the graphical abstract). The small molecules tested
in this study may be used as prophylactic agents for high-
risk personals like elders, medical staff in the front-line, or
cancer patients.

Conclusion

The newly emerged human coronavirus pandemic is the
health crisis we encounter in the 21 century, leaving more
than 100000 deaths and 1.6 million reported cases. Natural
products are known historically for its pharmaceutical prop-
erties. In this study, we tried to illuminate the route that
some natural product active compounds may utilize though
the human cell-surface receptor HSPA5 and its impact on
SARS-CoV-2 attachment. These natural compounds or hor-
mones may be used to reduce the risk of COVID-19 for high-
risk people like elders and cancer patients or the front-line
medical staff.
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